【定理・公式・証明】高校数学定理・公式 – 数学A – 正の約数の個数・総和TwitterFacebookはてブPocketLINEコピー2020.05.11スポンサーリンク目次正の約数の個数正の約数の総和正の約数の個数p,q,r,⋯ を素数, a,b,c,⋯ を正の整数とする。自然数 n が n=paqbrc⋯ と素因数分解されるとき, n の正の約数の個数は (a+1)(b+1)(c+1)⋯ (個)$である。 スポンサーリンク正の約数の総和p,q,r⋯ を素数, a,b,c,⋯ を正の整数とする。 n=paqbrc⋯ のとき, n の約数の総和は(1+p+⋯+pa)(1+q+⋯+qb)(1+r+⋯+rc)⋯である。