組合せ
$\displaystyle _{n} C_{k} = \frac{_{k} P_{k}}{k!}$ (通り)
$_{n} C_{k}$ の性質①( $_{n} C_{k} = _{n} C_{n-k}$
(Ⅰ) $\displaystyle _{n} C_{k} = \frac{n!}{k!(n-k)!}$
(Ⅱ) $_{n} C_{k} = _{n} C_{n-k}$
$_{n} C_{k}$ の性質② ( $k \cdot _{n} C_{k} =n \cdot _{n-1} C_{k-1}$ )
$k \cdot _{n} C_{k} =n \cdot _{n-1} C_{k-1}$
証明
$\displaystyle k \cdot _{n} C_{k} =k \cdot \frac{n!}{k! \cdot (n-k)!}$
$\displaystyle =k \cdot \frac{n \cdot (n-1)!}{k \cdot (k-1)! \cdot (n-k)!}$
$\displaystyle = \frac{n \cdot (n-1)!}{(k-1)!(n-k)!}$
$\displaystyle =n \cdot \frac{(n-1)!}{(k-1)! \cdot \{ (n-1)-(k-1) \}!}$
$n \cdot _{n-1} C_{k-1}$
$_{n} C_{k}$ の性質③( $_{n} C_{k} = _{n-1} C_{k-1} + _{n-1} C_{k}$ )
$_{n} C_{k} = _{n-1} C_{k-1} + _{n-1} C_{k}$
$\displaystyle _{n-1} C_{k-1} + _{n-1} C_{k} = \frac{(n-1)!}{(k-1)! \{ (n-1)-(k-1) \} !} + \frac{(n-1)!}{k! \{ (n-1) -k \} !}$
$\displaystyle = \frac{(n-1)!}{(k-1)!(n-k)!} + \frac{(n-1)!}{k!(n-k-1)!}$
$\displaystyle = \frac{k(n-1)!}{k(k-1)!(n-k)!} \frac{(n-1)!(n-k)}{k!(n-k)(n-k-1)!}$
$\displaystyle = \frac{k(n-1)!}{k!(n-k)!} + \frac{(n-1)!(n-k)}{k!(n-k)!}$
$\displaystyle = \frac{(n-1)!(k-n-k)}{k!(n-k)!}$
$\displaystyle = \frac{n(n-1)!}{k!(n-k)!}$
$\displaystyle = \frac{n!}{k!(n-k)!}$
$= _{n} C_{k}$