Mathrao

【定義・定理・公式】高校数学基本事項 – 数学B – 位置ベクトル,ベクトルと図形

スポンサーリンク

位置ベクトル

【定義】

位置ベクトル:原点を始点とするベクトル

位置ベクトルが $\vec{p}$ である点 $\mathrm{P}$ を $\mathrm{P}(\vec{p})$ で表す。

また,2点 $\mathrm{A}(\vec{a})$,$\mathrm{B}(\vec{b})$ に対し,ベクトル $\overrightarrow{AB}$ は $\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}=\vec{b}-\vec{a}$ と表される。

 

スポンサーリンク

分点・重心の位置ベクトル

分点の位置ベクトル

2点 $\mathrm{A}(\vec{a})$,$\mathrm{B}(\vec{b})$ を結ぶ線分 $\mathrm{AB}$ を $m:n$ に内分する点 $\mathrm{P}(\vec{p})$ と外分する点 $\mathrm{Q}(\vec{q})$,および,線分 $\mathrm{AB}$ の中点 $\mathrm{R}(\vec{r})$ は

三角形の重心の位置ベクトル

3点 $\mathrm{A}(\vec{a})$,$\mathrm{B}(\vec{b})$,$\mathrm{C}(\vec{c})$ を頂点とする $\triangle \mathrm{ABC}$ の重心 $\mathrm{G}(\vec{g})$ は

$\vec{g}=\displaystyle\frac{\vec{a}+\vec{b}+\vec{c}}{3}$

共点条件(異なる3本以上の直線が1点で交わるための条件)

点の一致は位置ベクトルの一致から示す。

例)

3点 $\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$ の一致は $\overrightarrow{OP}=\overrightarrow{OQ}=\overrightarrow{OR}$ から示す。

 

共線条件(異なる3個以上の点が同じ直線上にあるための条件)