Mathrao

【定義・定理・公式】高校数学基本事項 – 数学A – 三角形の辺の比,外心,内心,重心

スポンサーリンク

線分の内分点・外分点

【定義】

点 $\mathrm{P}$ が線分 $\mathrm{AB}$ を $m:n$ に内分する:$m$,$n$ を正の数としたとき,線分 $\mathrm{AB}$ 上の点 $\mathrm{P}$ が $\mathrm{AP} : \mathrm{PB} =m:n$ を満たすこと

内分点:内分する点

点 $\mathrm{Q}$ が線分 $\mathrm{AB}$ を $m:n$ に外分する:$m$,$n$ を正の数としたとき,線分 $\mathrm{AB}$ の延長上の点 $\mathrm{Q}$ が $\mathrm{AQ} : \mathrm{QB} =m:n$ を満たすこと

内分点:外分する点

 

スポンサーリンク

三角形の角の二等分線と比

【定理】

平行線と同位角・錯角,辺の比

三角形の内角の二等分線と辺の比

$\triangle \mathrm{ABC}$ の $\angle \mathrm{A}$ の二等分線と辺 $\mathrm{BC}$ との交点 $\mathrm{P}$ は,辺 $\mathrm{BC}$ を $\mathrm{AB} : \mathrm{AC}$ に内分する。

三角形の外角の二等分線と辺の比

$\mathrm{AB} \neq \mathrm{AC}$ である $\triangle \mathrm{ABC}$ の頂点 $\mathrm{A}$ における外角の二等分線と辺 $\mathrm{BC}$ の延長との交点 $\mathrm{Q}$ は,辺 $\mathrm{BC}$ を $\mathrm{AB} : \mathrm{AC}$ に外分する。

 

スポンサーリンク

三角形の五心

【定義】

外接円:三角形の3つの頂点を通る円

外心:外接円の中心

内接円:三角形の3辺に接する円

内心:内接円の中心

中線:三角形の頂点と向かい合う辺の中点を結ぶ線分

重心:三角形の3本の中線の交点

垂心:三角形の3つの頂点から向かい合う辺に下ろした垂線の交点

傍接円:三角形の1辺と他の2辺の延長に接する円

傍心:傍接円の中心

※傍心・傍接円は3つある。

【定理】

外心

三角形の3辺の垂直二等分線は1点で交わる。

内心

三角形の3つの内角の二等分線は1点で交わる。

重心

三角形の3本の中線は1点で交わり,その点は各中線を $2:1$ に内分する。

垂心

三角形の3つの頂点から向かい合う辺に下ろした垂線1点で交わる。

傍心

三角形の1つの頂点における内角の二等分線と,他の2つの頂点における外角の二等分線は1点で交わる。

 

スポンサーリンク

中線定理

【定理】

中線定理

$\triangle \mathrm{ABC}$ の辺 $\mathrm{BC}$ の中点を $\mathrm{M}$ とすると

$\mathrm{AB}^2 + \mathrm{AC}^2 =2( \mathrm{AM}^2 + \mathrm{BM}^2 )$